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Abstract. We study a spin-one-half Ising model of an alternating magnetic superlattice.
We use the mean-field approximation and express our results for the Curie temperature
in terms of two types of determinants. The dependence of the Curie (emperature on
the film thickness is obtained. The effects of surface modification on finite superiattices
are studied numerically for two types of modification to the surface exchange constants.

1. Introduction

Over the years, the magnetic properties of ordinary lattices and artificially fabricated
superlattices have been widely studied. The effect of a surface on the magnetic
behaviour has also been the subject of many theoretical investigations [1-7].

It is widely accepted that the magnetic properties of a surface may differ from
those in the bulk of the solid. This is expected since the atoms in the surface region
are in a different environment, and the interactions (exchange constants) associated
with them may differ from those in the bulk. If the surface exchange constants are
above some critical values, the surface will order at a temperature T, > T, (Curie
temperature for the bulk); and in the temperature region T, < T < T, we have
surface magnetic structure, with the magnetization decaying exponentially into the
bulk with a characteristic length. This surface magnetism has been confirmed by
recent experimental results [8-11].

In most of the theoretical work, the lattice is considered to be compositionally
uniform, consisting of only one kind of magnetic atom. The system is also assumed
to be infinite, or in the surface problem, semi-infinite.

With the advent of modern vacuum science, and in particular epitaxial-growth
techniques, it is nowadays possible to grow very thin magnetic films of controllable
thickness or even monolayers atop non-magnectic substrates [12-18). For example,
monolayers of cobalt [12, 13] iron [14, 15] and nickel [16] have been grown on copper;
an iron monolayer has been grown on goid {17] and a gadolinium monolayer has also
been grown on tungsten [18)]. Ferromagnetic order in some of these monolayers has
also been reported. A superlattice in which the atoms vary from one monolayer to
another can also be envisaged.

In a recent theoretical papei [7], the phase transitions in a finite system with one
kind of bulk atom were studied using the Ising model in the mean-field approximation,
The effects of surface modification are also considered.
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In the present article, we generahze the method of [7] to an alternating magnetic
superlattice. We consider a spin-1 Ising model with alternate layers having atoms
with exchange constants J,, Jg. ’Ihe mean-field approximation is employed and the
results are expressed in terms of two types of determinant which can be evaluated. For
a finite pure alternating superlattice, the Curie temperature can be solved analytically.

We next investigate finite superlattices with surface modifications. We have con-
sidered two cases: (i) in which only one of the surface layer exchange constants J, is
different, and (ii) in which both the top and the bottom surface layer constants J,,
Jyo are allowed to change. Our results for the Curie temperatures can be obtained by
solving an equation involving the same two determinants. Finally, numerical results
are shown for some typical values of the exchange constants.

2. Finite superlattice with no modification

We consider a lattice of localized spins with spin equal to one-half. The interaction
is of the nearest-neighbour ferromagnetic Ising type and the strength of the interac-
tion (exchange constant) is modulated to reflect a superlattice structure and possible
surface modification.

H= _%ZZJ U:'raJr hzair‘ (1)

1,7 o

Here (4, 7) are plane indices and (r, ') are different sites of the planes, o, is
the spin variable, ~ is the external magnetic field, and J;; is plane-dependent. We
will retain only nearest-neighbour terms.

In the mean-field approximation, o, is replaced by its mean value M; associated
with each plane, and is determined by a set of simultaneous equations

M, = tanh Blzody M; + 2J; ;0 Meyy + 2J; - M, + b @

where z,, z are the numbers of nearest neighbours in the planc and between the
planes respectively.

Near the transition temperature, the order parameters M, are small, and in the
absence of an external field, (2) reduces to

AM =0 - 3)
where the matrix A is symmetric and tridiagonal with elements
n = (kpT = 20 )b 0 = 2dpn gy o + 8 g )- @
The transition tcmperature is given by the determinant equation,
detA =0. (&)
Let us start with a simple alternating lattice of 2n layers. Layers ¢ =

0,2,...,2n—2 are made up of atoms of type A with exchange constant .J,; whereas
layers ¢+ = 1,3,...,2n — 1 consist of atoms of type B with exchange constant Jg.
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Figure 1. (2) Simple alternating structure. (b) Superlattice with modified top layer. (¢)
Superiattice with modification to top and bottom layers.
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The exchange constant between successive layers is assumed to be J, ;. = J (figure

1(a)).

We will define two basic determinants Dy, Corp,_y

-xA _1 -
-1 .’!.'B -1
-1 -Z'A -1

D2m =

- LB amxem

rg -1
Comor = -l e -l ©)
T (2m-1)x(2m—1)
where

xy = (kpT — 29J,)/2J zg = (kgT — zgJg) /2 J. (7}

Then for this simple alternating lattice, (5) reduces to

det A = (2J)*" D, (T). (65}
The determinants C and D satisfy the recurregnce relations

Dym = 24Coma1 = Dapmsg Ci;m—l =23 — Com-z. )
Eliminating C's, we have

2m

whete

a=gx,rg — 2 = 2cosh ¢. (11)
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The difference equation (10) has the solution
D,,. = (1/ sinh ¢)[sinh(m + 1)¢ + sinh(md¢)] 12
and hence
Com—1 = (2/z4 sinh ¢) sinh(md)[cosh ¢ + 1] m21. (13)

Notice that in (12) and (13), ¢ is real when « 2 2. For a < 2, ¢ is purely
imaginary and equal to i@, and the hyperbolic functions become the trigonometric
functions of 6.

For the simple lattice, the Curie temperature is given by (8)

D2n(T) =0.

This has no solution for o > 2.
For & < 2, the solution is @ = 27 /(2n + 1), or solving for T, in (11), we have

te = 3{(Ja +3p) +[(Js = 4p)’ + 16 cos’(n/(2n + 1)))/?)  (14)
where we have introduced the dimensionless quantities
Ja =zgdyf2d Jg = zgdg/zJ t.=kT_ f2J. (15)

If we had started with a lattice of {2n — 1) layers, with B atoms at both ends,
we would have obtained almost the same result as (14), but with 2n replaced by
(2n—1).

The bulk Curie temperature is obtained by taking the limit n — « and is given
by

1= &{js + Jp + [(Ja — 38)° + 16]'/7} {16)

For a finite lattice, the Curie temperature is always less than ¢;. In figure 2, we
have shown the dependence of {,/t, on the number of layers. The parameters used
are for curve (@) 7, = 2, jg = 1 and for curve (») j, = 8, jp = 4. Notice that
the bulk values of 3.56 and 8.83 are reached quite rapidly. This limiting value is
approached faster in the case of curve (b).

3. Superlattice with modified top layer

The effects of the surface on the magnetism depend on how the surface modifies
the surface atoms and their interactions [1-7, 19]. In this paper, we only consider
modification to the exchange constants of the Ising model. In the first model, we allow
one surface (top) intralayer exchange constant J, to vary; in the second model, we
allow changes in both the top and the bottom surface intralayer exchange constants J,
and Jy,. Other types of modification, such as to the intralayer exchange constants,
or to more than two surface layers, can be considered. Some of these have been
discussed earlier for uniform [6] and alternating [19] semi-infinite superlattices.
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Figure 2. Dependence of Curie temperature & /2y on thickness for (@) j4 =2, jg =1
and () ja = 8, Jp = 4. :

The first model is shown in figure 1(6). Here we consider a lattice of 2n + 1
layers. Layer ¢ = 0 has atoms of exchange constant Jy; layers 1, 2, ..., 2n — 1
consist of A atoms of exchange J,, whereas layers i = 2,4,..., 2n are composed
of B atoms with Jp. The interlayer exchange is J.

In this case, (5) is given by

g —1
—1 .'L‘B —1
det(T) = _ a”n
=1 Zpdantiyxien+ty)
and
wy = (kg T — 29Jy) /2] Jo = zpdo /2. (18)

Expanding about the first row, this is

29 D3, (T) = Cop4(T) = 0. (19)
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Figure 3. Dependence of ¢ on jo for j4 = 2, jp = 1, and for (i) three, (i) five, (iii)
seven and (iv) infinite layers.

This equation can be solved numerically for the Curie temperature 1, = kT, /zJ
for any thickness n, and exchange constants j,, jg and j.

In figures 3 and 4, we have shown our results for the Curie temperature ¢, as
a function of j, for the two choices (@) j, =2, jg =1 and (b) j, = 8, jg = 4
respectively, In figure 3, the curves are for superlattices of three, five and seven layers
as well as for a semi-infinite superlattice. In figure 4, we have shown our results for
three and seven layers and the semi-infinite case. We notice that the finite case is
significantly different from the semi-infinite case only for small j,.

For a superiattice of many (infinite} layers, the system always orders at the bulk
Curie temperature until a critical jo. is reached. This can be evaluated {19] in terms
of j,, jp a5 2.28 and 6.41 respectively. Above j,., surface magnetism occurs, with
the magnetic moment decaying into the bulk.

4, Superlattice with modification to top and bottom layers

The second model is shown in figure I(c). Here we consider a lattice of 2n + 2
layers. Layers ¢ = 1,3,...,2n — 1 consist of A atoms and layers ¢ = 2,...,2n
consist of B atoms. The top layer i = 0 and bottom layer i = 2n 4 1 have exchange
constants j, and j,, respectively. The intralayer exchange J remains the same.

In this case, (5) becomes

det A = (zJ)* et ,(T) =0 (20)
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Figure 4 Dependence of tc on jo for y5 = 8, jg = 4 and for (f) three, (ii) seven and
(iiiy infinite Jayers.

where
z, =1
-1 -'EB -1
dety(T) = . @1)
—1 $B _1
=1 Zgod (gn42)x(2n+2)
and

xuo = (kBT— ZOJGO)IZJ juo = ZUJOO/ZJ' '
By interchanging rows and expanding, we can write
dety(T) = 2gowo Dy, — (Tpo + 2o%a/2p)Cony + Dy =0 (22)

with the D and Cs from (12) and (13).

For any finite superlattice, (22) can again be solved numerically for different j,,
Jp» Jo and jo,. T reduce our parameters, we have chosen jo, = efa, fy = ¢ins
where c is the single modification parameter (¢ = 1 is our simple alternating lattice).

In figures 5 and 6, we have plotted ¢, versus ¢ for the two cases (@) j, = 2,
Jjg = 1 and (b) j, = 8, jg = 4 respectively. The results for four and six layers, as
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Figure 5. Variation of ¢ with ¢ for j, = 2, jg = 1 and for (i) four, (i) six and (iii)
infinite layers. -

well as for the infinite lLimit, are shown. Again, the dependence of . on the layer
thickness is significant only for small ¢. For larger ¢, the infinite limit is approached
rapidiy.

For the infinite case, the system again orders at the bulk ¢, below a critical C...
This critical value can be solved as in [19] by taking the limit

Dzn—leZn =1 C2n—l/D2n =2/z,.

The values for our two cases are C, = 1.39 and 1.05 respectively.

Although we have shown our numerical results for only two types of modification,
the method can be used for other situations by considering- different determinants,
and expressing them in terms of the Cs and Ds.

At the moment, iron and cobait may be the best candidates for alternating super-
lattices. Since these are itinerant magnets with nearly isotropic magnetic interaction,
one may have to use an itinerant model, or at least a Heisenberg model, to describe
the system properly.

In recent work on finite-size scaling [20], the transition temperature size depen-
dence is given by T.(n) — T.(a) « n~*, where X is the shift exponent. Since we
are applying the mean-field approximation, our results for large n (number of layers)
are consistent with the expected mean-field exponent of A = 1/v, where v = } is
the mean-field correlation length exponent. This is different from the results of more
accurate calculations [20). For example, Capehart and Fisher [21] have studied the
Ising layer system with a uniform exchange by high-temperature series expansion and
obtained the value ) = 1.56.
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Figure 6. Variation of ¢{; with ¢ for j4 = 8, jg = 4 and for (i) four, (i) six and (jii)
infinite layers,

In conclusion, we hope our work will stimulate other theoretical studies, and our

results will have relevance to some future experiments.
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